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Goal  

Assess the strength of evidence for causality in 
observational research that is potentially subject to 
unmeasured confounding.  

Do so while avoiding assumptions on the structure or 
type of unmeasured confounder(s). 



Questions of sensitivity analysis  

Question #1: Given unmeasured confounding of 
specified strength, how large of a true causal e↵ect 
would remain?  

Question #2: How severe would unmeasured 
confounding have to be to “explain away” the e↵ect? 

Sensitivity analysis for a single study  

VanderWeele TJ & Ding P (2017). Sensitivity analysis in 
observational research: Introducing the E-value. ​Annals of 
Internal Medicine​, 167(4), 268-274. 



Example  

An early debate about unmeasured confounding 
concerned the e↵ect of smoking on lung cancer.  

Some (e.g., Fisher) disputed causal claims: Might 
confounding by genotype explain away the association? 

 
Question #1  



Given unmeasured confounding of specified strength, how 
strong would the true causal e↵ect of smoking on lung 
cancer still be? 

Bounds on confounding bias  

RR​c​XY ​, RR​t​XY ​: confounded (observed) and true relative risks  

Define the ratio of the confounded to true relative risk 
(for ​RR​c​XY ​> ​1) as: ​B ​= ​RR​c​XY ​/RR​t​XY ​. 



 
Bounds on confounding bias  

For ​RR​c​XY ​> ​1  

RR​c​XY ​, RR​t​XY ​: confounded (observed) and true relative risks  



RR​t​XY ​ ​RR​c​XY  

 ​✓ ​RR​XU ​· RR​UY  

◆  

RR​XU ​+ ​RR​UY ​ ​1  

, RR​c​XY ​> ​1  

| ​{​z ​}  
bound on ​B  

RR​XU ​: Strongest ​RR​XU ​comparing any 2 categories of ​U 
RR​UY ​: Strongest ​RR​UY ​comparing any 2 categories of 
U ​among ​X ​= 0 or ​X ​= 1 

Bounds on confounding bias  
For ​RR​c​XY ​> ​1  

RR​c​XY ​, RR​t​XY ​: confounded (observed) and true relative risks  



RR​t​XY ​ ​RR​c​XY  

 ​✓ ​RR​XU ​· RR​UY  

◆  

RR​XU ​+ ​RR​UY ​ ​1  

, RR​c​XY ​> ​1  

| ​{​z ​}  
bound on ​B  

Example  
Smoking and lung cancer: ​RR​c​XY ​= 10​.​73.  
Suppose ​RR​XU ​= 2 and ​RR​UY ​= 3.  
Then bound on ​B ​= ​2​·​3  

2+31 ​= 1​.​5, shifting the point estimate to  
10​.​73​/​1​.​5=7​.​2 (still large!). 

Bounds on confounding bias  
For ​RR​c​XY ​< ​1  

RR​c​XY ​, RR​t​XY ​: confounded (observed) and true relative risks  



RR​t​XY ​�​RR​c​XY ​·  

✓ ​RR​XU ​· RR​UY 

RR​XU ​+ ​RR​UY ​ ​1  
◆  

, ​RR​c​XY ​< ​1  

| ​{​z ​}  
bound on ​B  

RR​XU ​: Strongest ​RR​XU ​for any category of confounder ​U 
(inverse) ​RR​UY ​: Strongest ​RR​UY ​for any 2 categories of ​U  

among ​X ​= 0 or ​X ​= 1 
Fine print  

Slight revisions to the definitions of ​RR​XU ​and ​RR​UY ​allow the 
same bound to apply for arbitrary type and number of ​U​.  

Can condition on any measured confounders throughout: then 



B ​is the bias factor ​above and beyond ​measured confounders. 
Visualizing the bias factor 



 
Question #2  



How strong would unmeasured confounding have to be in 
order to completely explain away the e↵ect of smoking on lung 
cancer? 

Example  

Smoking and lung cancer: ​RR​c​XY ​= 10​.​73, 95% CI: [8​.​02​, 



14​.​36].  

Example  

Smoking and lung cancer: ​RR​c​XY ​= 10​.​73, 95% CI: [8​.​02​, 



14​.​36]  

The E-value  

The minimum strength of association (​RR ​scale) that ​U ​must 
have with both ​X ​and ​Y ​(conditional on measured covariates) 
to fully explain away ​RR​c​XY ​(i.e., to have ​RR​t​XY ​= 1).  



q  
E-value = ​RR​c​XY ​+  RR​c​XY ​·RR​c​XY ​ ​1​, RR​c​XY ​> ​1  

(For ​RR​c​XY ​< ​1, first take its inverse.)  

Could apply to point estimate and CI limit closer to null. 
Smoking and lung cancer: E-value for lower CI limit of 

8​.​08 is ​8​.​08 + ​
p​8​.​08 ​· ​(8​.​08  1) = 15​.​64  

. 
Interpretation  

For smoking and lung cancer (E-value for point estimate of 
20.95 and for CI of 15.64):  

“With an observed risk ratio of 10.73, an unmeasured 



confounder that was associated with both the outcome and the 
exposure by a risk ratio of 21-fold each, above and beyond the 
measured confounders, could explain away the estimate, but 
weaker confounding could not. An unmeasured confounder 
that was associated with both the outcome and the exposure 
by a risk ratio of 16-fold each, above and beyond the 
measured confounders, could shift the CI to include the null, 
but weaker confounding could not.” 

Large E-value ​) ​Only severe unmeasured confounding 
could explain away the e↵ect ​) ​robust to unmeasured 

confounding  

Small E-value ​) ​Weak unmeasured confounding could 
potentially explain away the e↵ect ​) ​not robust to unmeasured 
confounding 

E-values vs. p-values  

Associations of breast-feeding with health outcomes ​(AHRQ, 
2007; Moorman, 2008)​:  



Outcome RR​c​XY ​p-value E​est ​E​CI​ ​Maternal ovarian  
cancer 0.50 [0.30, 0.80] 0.006 3.4 1.8  

Childhood  
leukemia 0.81 [0.71, 0.91] ​< ​0​.​001 1.8 1.4  

p​-value is more extreme for leukemia than ovarian cancer, 
but opposite is true for E-values. 

Other e↵ect size scales  

Can apply E-value formula as-is:  
1. ​Rate ratio  
2. ​OR ​with rare outcome  
3. ​HR ​with rare outcome  

Can approximately convert e↵ect size to ​RR ​and then 
apply E-value formula:  



1. ​OR ​with common outcome  
2. ​HR ​with common outcome  
3. ​Risk di↵erence (inference more 
complicated) ​4. ​Standardized mean 
di↵erence  
5. ​Linear regression coecient 

Software  

Online calculator: 
https://evalue.hmdc.harvard.edu (can 
Google “E-value calculator”) 



 
R package EValue:  

> library(EValue)  
> evalues.RR( est = 1.63, lo = 1.12 )  



point lower upper  
RR 1.630000 1.120000 NA  
E-values 2.643361 1.486606 NA  

Handles ​OR​, ​HR​, rate ratio, risk di↵erence, standardized 
mean di↵erence, linear regression coecient.  

Also does analogous sensitivity analyses for 
meta-analysis (tomorrow) or for selection bias. 

Summary  

The E-value is a tool to characterize robustness to 
unmeasured confounding. It is easy to calculate manually or 
using our software.  

It does not require specifying sensitivity parameters, so 
removes “researcher degrees of freedom”.  



It can be reported in just 1-2 sentences in a paper.  

We think its widespread use would better calibrate 
confidence in observational research. 

Sensitivity analysis for a meta-analysis  

Mathur MB & VanderWeele TJ (2019). Sensitivity analysis 
for unmeasured confounding in meta-analyses. ​JASA. 

Meta-analysis basics 



 
Meta-analysis basics 



 
Applied example 



 



Question #1  
For a meta-analysis  

Soy consumption is not very interesting unless its 
true, unconfounded RR is ​< ​0.90.  

Given unmeasured confounding of specific strength, what 
proportion of the (heterogeneous) true e↵ects of soy on 
breast cancer would still be more protective than ​RR ​= 
0​.​90? 
Why characterize evidence strength this way? 



 

Orange: ​SMD ​
\ ​= 0​.​26, 95% CI: (0​.​12​, ​0​.​39), ​p​b(​q​)=0​.​22, CI: (0​.​06​, 

0​.​38) ​Gray: ​SMD ​
\ ​= 0​.​25, 95% CI: (0​.​07​, ​0​.​56), ​p​b(​q​)=0​.​30, CI: 

(0​.​04​, ​0​.​56) 



Bounds on confounding bias 
For a meta-analysis  

B​⇤ ​= log (​B​)  
y​t​i ​= true log-RR in study ​i  
y​c​i ​= confounded (observed) log-RR in 

study ​i ​Assume ​y​t​i ​⇠ N M​t​, V ​t​.  

Also assume ​B​⇤​i ​⇠ N µ​B​⇤ ​, ​
2​B​
⇤​ ​q y​t​i​. 

Then:  

p​b(​q​) = ​P​
b ​y​t ​< q  

=  
0  

@​q  µ​B​⇤ 
y​b​c  

q​R​ ​⌧ ​2​c  ​
2​B​⇤  

1  

A ​, ⌧ ​2​c ​> 
2​B​⇤  



(apparently preventive RR) 
Bounds on confounding bias 

For a meta-analysis  

Applying the delta method, 

asymptotically: ​vuu​
tVar ​

c ​y​b​c​R  

SE​
c ​(​p​b(​q​)) =  

⌧ ​2​c  ​
2​B​
⇤​
+Var ​

c ​(​⌧ ​2​c ​)​q 

µ​B​⇤  ​y​b​
c​
R​2  

4​⌧ ​2​c  ​
2​B​
⇤​

3  

·  
0  

@​q  µ​B​⇤  ​y​b​
c 

q​R  

1 A  

⌧ ​2​c  ​
2​B​⇤  



Works for any ​asymptotically independent ​estimators ​y​b​R​, ⌧ ​2​. 
Applied example 



 
Question #2  



For a meta-analysis  

Soy consumption is not very interesting unless its true, 
unconfounded RR is ​< ​0.90. If ​< ​10% of true e↵ects meet 
this criterion, the soy-cancer relationship is too weak to 
care about.  

How severe would unmeasured confounding have to 
be to reduce to ​< ​10% the proportion of true e↵ects 
more protective than ​RR ​= 0​.​90? 

Minimum bias factor to  
yield few strong e↵ects  

For a meta-analysis  

T​
b​(​r, q​): The minimum common bias factor (RR scale) required 



to lower to less than ​r ​the proportion of studies with true e↵ect 
stronger than ​q  

Small ​T​
b​(​r, q​) ​) ​Slight bias could explain away e↵ect ​) 

Sensitive to unmeasured confounding  

Large ​T​
b​(​r, q​) ​) ​Only large bias could explain away ​) ​Robust 

to unmeasured confounding 
Minimum bias factor to  
yield few strong e↵ects  

For a meta-analysis  

T​
b​(​r, q​): The minimum common bias factor (RR scale) required 

to lower to less than ​r ​the proportion of studies with true e↵ect 
stronger than ​q  



T​
b​

(​r, q​) = exp ​n​
1​

(1  ​r​)​
p​
⌧ ​2​c ​ ​q ​+ ​y​b​c​R​o  

with approximate standard error:  

SEc ​
⇣​
T​

b​
(​r, q​)​

⌘​
= exp ​

(p​
⌧ ​2​c​

1​(1  ​r​) ​q ​+ ​y​b​c​R​
)​
⇥  

s  

Var ​
c ​y​b​c​R​+Var ​

c ​(​⌧ ​2​c ​) (​
1​(1  ​r​))​2  

4​⌧ ​2​c 

Applied example  

T​
b​(​r ​= ​.​10​, q ​= log 0​.​90) = 1​.​63 



 
Minimum confounding strength 



to yield few strong e↵ects  
For a meta-analysis  

G​
b​(​r, q​): The minimum common confounding strength       

of association (RR scale) required to lower to less than          
r ​the proportion of studies with true e↵ect stronger than          
q  

G​
b​

(​r, q​) = 

T​
b​(​r, q​) +  

r​
⇣  

T​
b​

(​r, q​)​⌘​
2

 

T​
b​(​r, q​)  

with approximate standard error:  

SEc ​
⇣​
G​

b​
(​r, q​)​

⌘​
= SEc ​

⇣​
T​

b​
(​r, q​)​

⌘​
·​
0@​
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T​
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Applied example  

T​
b​

(​r ​= ​.​10​, q ​= log 0​.​90) = 1​.​63​, ​G​
b​(​r ​= ​.​10​, q 

= log 0​.​90) = 2​.​64



 

Software  



R: Function confounded ​m​eta in package 
EValue Online calculator:  
https://mmathur.shinyapps.io/meta_gui_2/ 

Single study 

Meta-analysis  

Summary  

True e↵ect strength 
with confounding of 
specific strength  

RR​c​XY ​/B  
(causative case)  

(Ding & VanderWeele, 
2017)  

p​b(​q​)  
(Mathur & 
VanderWeele, in press)  

Min confounding 
needed to  
explain away e↵ect  



E-value  
(VanderWeele & Ding, 

2017)  

G​
b​(​r, q​)  

(Mathur & 
VanderWeele, in press) 
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To download slides:  
https://osf.io/2r3gm/  



To contact me:  
mmathur@stanford.edu 

APPENDIX 
Appendix  

Conservative choices for ​2​B​⇤  

Table: ​Bounds on ​p​b(​q​) provided by homogeneous bias with an 
apparently causative or preventive pooled e↵ect. ​µ​b​t ​estimates ​µ​t ​and 
is equal to ​y​b​c​R ​ ​µ​B​⇤ ​for ​y​b​c​R ​> ​0 or ​y​b​c​R ​+ ​µ​B​⇤ ​for ​y​b​c​R ​< ​0.  

q > µ​b​t ​q < µ​b​t  

y​b​c​R ​> ​0 Upper bound Lower bound  
y​b​c​R ​< ​0 Lower bound Upper bound 


