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Goal

Assess the strength of evidence for causality in

observational research that is potentially subject to
unmeasured confounding.

Do so while avoiding assumptions on the structure or
type of unmeasured confounder(s).



Questions of sensitivity analysis

Question #1: Given unmeasured confounding of
specified strength, how large of a true causal edect
would remain?

Question #2: How severe would unmeasured
confounding have to be to “explain away” the e<ect?

Sensitivity analysis for a single study

VanderWeele TJ & Ding P (2017). Sensitivity analysis in
observational research: Introducing the E-value. Annals of
Internal Medicine, 167(4), 268-274.



Example
An early debate about unmeasured confounding
concerned the edect of smoking on lung cancer.

Some (e.g., Fisher) disputed causal claims: Might
confounding by genotype explain away the association?
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Question #1



Given unmeasured confounding of specified strength, how
strong would the true causal e<ect of smoking on lung
cancer still be?

Bounds on confounding bias

RR°yy, RR'yy: confounded (observed) and true relative risks

Define the ratio of the confounded to true relative risk
(for RR®yy > 1) as: B = RR®yy/RRyy .



Bounds on confounding bias

RR’y, RR', : confounded (observed) and true relative risks
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bound on B

RRy, : Strongest RRy,, comparing any 2 categories of U
RRy : Strongest RRy comparing any 2 categories of
Uamong X=0orX=1

Bounds on confounding bias

RR°y, RR'yy: confounded (observed) and true relative risks
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Example
Smoking and lung cancer: RR®,, = 10.73.

Suppose RRy, =2 and RR = 3.

Then bound on B = 22
2+31 = 1.5, shifting the point estimate to

10.73/1.5=7.2 (still large!).
Bounds on confounding bias

RR’y, RR', : confounded (observed) and true relative risks
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bound on B

RRy, : Strongest RRy, for any category of confounder U
(inverse) RRy: Strongest RR,, for any 2 categories of U
among X=0or X =1
Fine print

Slight revisions to the definitions of RRy,,;and RR,y allow the
same bound to apply for arbitrary type and number of U.

Can condition on any measured confounders throughout: then



B is the bias factor above and beyond measured confounders.
Visualizing the bias factor
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Question #2



How strong would unmeasured confounding have to be in
order to completely explain away the e<ect of smoking on lung
cancer?

Example

Smoking and lung cancer: RR®y, = 10.73, 95% ClI: [8.02,



PRy

14.36].

Example

Smoking and lung cancer: RRCXY= 10.73, 95% CI: [8.02,



14.36]

The E-value

The minimum strength of association (RR scale) that U must
have with both X and Y (conditional on measured covariates)
to fully explain away RR’y (i.e., to have RRIXY= 1).



q
E'Value = RRCXY+ RchyRRCXy 1, RRCXY> 1

(For RR®yy < 1, first take its inverse.)

Could apply to point estimate and CI limit closer to null.
Smoking and lung cancer: E-value for lower Cl limit of

8.08is g og + ~8.08 - (8.08 1) = 15.64

Interpretation

For smoking and lung cancer (E-value for point estimate of
20.95 and for Cl of 15.64):

“With an observed risk ratio of 10.73, an unmeasured



confounder that was associated with both the outcome and the
exposure by a risk ratio of 21-fold each, above and beyond the
measured confounders, could explain away the estimate, but
weaker confounding could not. An unmeasured confounder
that was associated with both the outcome and the exposure
by a risk ratio of 16-fold each, above and beyond the
measured confounders, could shift the Cl to include the null,
but weaker confounding could not.”

Large E-value ) Only severe unmeasured confounding

could explain away the edect ) robust to unmeasured

confounding

Small E-value ) Weak unmeasured confounding could
potentially explain away the edect ) not robust to unmeasured
confounding

E-values vs. p-values

Associations of breast-feeding with health outcomes (AHRQ,
2007; Moorman, 2008):



Outcome RR®y p-value E, E, Maternal ovarian
cancer 0.50 [0.30, 0.80] 0.006 3.4 1.8
Childhood
leukemia 0.81 [0.71, 0.91] <0.001 1.8 1.4

p-value is more extreme for leukemia than ovarian cancer,
but opposite is true for E-values.

Other e<ect size scales

Can apply E-value formula as-is:
1. Rate ratio
2. OR with rare outcome
3. HR with rare outcome

Can approximately convert e<ect size to RR and then
apply E-value formula:



1. OR with common outcome

2. HR with common outcome

3. Risk di<erence (inference more

complicated) 4. Standardized mean

diderence

5. Linear regression coecient
Software

Online calculator:
https://evalue.nmdc.harvard.edu (can
Google “E-value calculator”)
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R package EValue:

> library(EValue)
> evalues.RR( est =1.63,l0=1.12)



point lower upper
RR 1.630000 1.120000 NA
E-values 2.643361 1.486606 NA

Handles OR, HR, rate ratio, risk di<erence, standardized
mean diderence, linear regression coecient.

Also does analogous sensitivity analyses for
meta-analysis (tomorrow) or for selection bias.

Summary

The E-value is a tool to characterize robustness to
unmeasured confounding. It is easy to calculate manually or
using our software.

It does not require specifying sensitivity parameters, so
removes “researcher degrees of freedom”.



It can be reported in just 1-2 sentences in a paper.

We think its widespread use would better calibrate
confidence in observational research.

Sensitivity analysis for a meta-analysis

Mathur MB & VanderWeele TJ (2019). Sensitivity analysis
for unmeasured confounding in meta-analyses. JASA.

Meta-analysis basics



Meta-analysis basics
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Applied example
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Question #1

Soy consumption is not very interesting unless its
true, unconfounded RR is < 0.90.

Given unmeasured confounding of specific strength, what
proportion of the (heterogeneous) true edects of soy on
breast cancer would still be more protective than RR =
0.907?

Why characterize evidence strength this way?
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Orange: SMD V= 0.26, 95% CI: (0.12, 0.39), pb(g)=0.22, Cl: (0.06,

0.38) Gray: SMD ‘= 0.25, 95% Gl (0.07, 0.56), pb(g)=0.30, CI:
(0.04, 0.56)



Bounds on confounding bias

B“=log (B)
yt,-= true log-RR in study i
¥°;= confounded (observed) log-RR in
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Bounds on confounding bias

Applying the delta method,
asymptotically: vuutvar c yb°r
Cc . C
SE_ (pb(9)) = He- Y0 g2
3 C
=% %8 svar (°0)
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Applied example
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Question #2



Soy consumption is not very interesting unless its true,
unconfounded RR is < 0.90. If < 10% of true e<ects meet
this criterion, the soy-cancer relationship is too weak to
care about.

How severe would unmeasured confounding have to

be to reduce to < 10% the proportion of true edects
more protective than RR = 0.907?

Minimum bias factor to
yield few strong e<ects

Tb(r, q): The minimum common bias factor (RR scale) required



to lower to less than r the proportion of studies with true edect
stronger than q

Small Tb(r, q) ) Slight bias could explain away e<ect )
Sensitive to unmeasured confounding

Large Tb(r, q) ) Only large bias could explain away ) Robust
to unmeasured confounding

Minimum bias factor to
yield few strong edects

Tb(r, q): The minimum common bias factor (RR scale) required

to lower to less than r the proportion of studies with true e<ect
stronger than q
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Applied example

Tb(r= .10, ¢ =log 0.90) = 1.63
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Minimum confounding strength



to yield few strong e<ects

Gb(r, q): The minimum common confounding strength

of association (RR scale) required to lower to less than
r the proportion of studies with true e<ect stronger than

q
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with approximate standard error:

i b 3 ‘b Ho@ b
SEc G (r,q) =SEc T (rq) - 1+2T7 (nq) 1
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Applied example

b b, _
T (r=.10, g=log 0.90) = 1.63, G (r=-10,q

=log 0.90) = 2.64
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R: Function confounded meta in package

EValue Online calculator:

https://mmathur.shinyapps.io/meta_gui_2/
Meta-analysis

pb(q)
Summary

True e<ect strength

Single study with confounding of _
specific strength  Min confounding
needed to
explain away e<ect
RRCy /B P y

(causative case)



E-value
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To download slides:
https://osf.io/2r3gm/



To contact me:
mmathur@stanford.edu

APPENDIX
Appendix

Table: Bounds on pb(q) provided by homogeneous bias with an
apparently causative or preventive pooled eect. ub'estimates u'and
is equal to yb®, pp-for yb°, >0 or yb°s + ug-for yb°, < 0.

g > pb'q < b’
yb°s >0 Upper bound Lower bound
ybCR < 0 Lower bound Upper bound



